Chem. Ber. 109, 2572 - 2580 (1976)

Beiträge zur Chemie des Bors, LXXVI¹⁾

N-Funktionelle Aminoborane: Darstellung und Assoziationsverhalten von [Dimethyl(thiophosphoryl)amino]boranen²⁾

Günther Muckle, Heinrich Nöth* und Wolfgang Storch

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Eingegangen am 19. November 1975

[Dimethyl(thiophosphoryl)amino]boranedes Typs[(CH₃)₂P(S)-NR]₃Bund[(CH₃)₂P(S)-NR]₂-BX sind monomer. Hingegen liegen die Verbindungen (CH₃)₂P(S)-NR-BX₂ (X = F, Cl, Br) in Lösung in einem Monomeren-Dimeren-Gleichgewicht vor, während $Cl_2P(S)-NCH_3-BX_2$ -Verbindungen (X = CH₃, Br) nicht assoziieren. ¹¹B-NMR-Daten und die Abhängigkeit des Monomeren/Dimeren-Verhältnisses von X legen eher eine $S \rightarrow B$ - als eine $N \rightarrow B$ -Koordination in den Dimeren nahe. Alle [(Thiophosphoryl)amino]dihalogenborane zersetzen sich leicht in (CH₃)₂P(S)X und (RNBX)₃.

Contributions to the Chemistry of Boron, LXXVI¹⁾

N-Functional Aminoboranes:

Preparation and Association Behaviour of [Dimethyl(thiophosphoryl)amino]boranes 2)

[Dimethyl(thiophosphoryl)amino]boranes of the types $[(CH_3)_2P(S)-NR]_3B$ and $[(CH_3)_2P(S)-NR]_2BX$ are monomeric. However, the compounds $(CH_3)_2P(S)-NR-BX_2$ (X=F, CI, Br) exist in solution in an equilibrium of monomers and dimers, while the aminoboranes of type $CI_2P(S)-NCH_3-BX_2$ ($X=CH_3$, Br) do not associate. ¹¹B n.m.r. data and the monomer/dimer distribution suggests $S\to B$ coordination rather than $N\to B$ coordination. All [(thiophosphoryl)amino]dihalogenoboranes decompose readily into $(CH_3)_2P(S)X$ and $(RNBX)_3$.

Vor kurzem berichteten wir über (Thiophosphorylamino)- und (Thiophosphinylamino)-diorganylborane³⁾, Verbindungen, die sich durch niedrige BN-Rotationsschwellen auszeichnen. ¹¹B-NMR-Daten legen in Übereinstimmung mit der geschwächten BN-Bindung eine im Vergleich zu Aminoboranen geringere π-Elektronendichte an den Boratomen nahe. B-Ständige Substituenten beeinflussen bekanntlich die BN-Bindungsstärke beträchtlich⁴⁾, insbesondere wird sie durch Halogensubstituenten verstärkt. Wir

LXXV. Mitteil.: J. C. Huffman, H. Fusstetter und H. Nöth, Z. Naturforsch. 31b, 289 (1976).
 Teil der Staatsexamensarbeit (1973) G. Muckle und der Dissertation (1974) W. Storch, beide Univ. München.

³⁾ H. Nöth, D. Reiner und W. Storch, Chem. Ber. 106, 1508 (1973). Nach IUPAC D-5.6 jetzt als Diorganyl[(thiophosphoryl)amino]borane zu bezeichnen.

⁴⁾ K. Niedenzu und J. W. Dawson, Boron-Nitrogen Compounds, Springer-Verlag, Berlin 1967.

berichten hier über [Dimethyl(thiophosphoryl)amino]dihalogenborane sowie über einige Bis- und Tris[dimethyl(thiophosphoryl)amino]borane.

Darstellung

Zum Aufbau des S=P-N-B-Gerüstes der [Dimethyl(thiophosphoryl)amino]borane bewährte sich wiederum die Methode der Silazanspaltung⁵). Nach (1) erhält man die thermisch labilen Dihalogenborane 2a-c in 50-85 proz. Ausbeute⁶). Die Reaktionstemperatur soll 0-20 °C nicht überschreiten.

$$2(CH_3)_2P(S) - NH - Si(CH_3)_3 + BCl_3 \rightarrow [(CH_3)_2P(S) - NH]_2BCl + 2ClSi(CH_3)_3$$
 (2)

$$3 (CH_3)_2 P(S) - NH - Si(CH_3)_3 + BCl_3 \rightarrow [(CH_3)_2 P(S) - NH]_3 B + 3 CISi(CH_3)_3$$
 (3)

Erhöht man das Molverhältnis der Umsetzung von 3 bzw. 1 mit BCl₃ auf 2:1, dann fällt neben 4 auch 5 bzw. 8 neben 7 an. NMR-Spektroskopisch wurde das Molverhältnis von 4:5 wie 3:1, von 8:7 wie 3:2 ermittelt. Die Trennung der beiden Produktgemische gelang nicht. 5 könnte durch Disproportionierung von 4 nach (4) entstanden sein. Da aber kein 6 nachweisbar war, ist es wahrscheinlicher, daß 4 mit 3 relativ rasch zu 5 weiterreagiert. Verglichen mit BCl₃ erfolgt Silazanspaltung durch das stärker Lewis-acide BBr₃ schneller. Zur präparativen Darstellung von 5 und 7 setzt man daher am besten einen Überschuß von 3 bzw. 1 mit BBr₃ z. B. nach (5) um. 7 erhält man außerdem leicht aus 3 mol (CH₃)₂P(S)N(Li)CH₃ und 1 mol BBr₃ ⁷⁾.

$$3 (CH_3)_2 P(S) - NCH_3 - Si(CH_3)_3 + BBr_3 \rightarrow [(CH_3)_2 P(S) - NCH_3]_3 B + 3 BrSi(CH_3)_3$$
 (5)

⁵⁾ O. J. Scherer, Organomet. Chem. Rev. A3, 281 (1968).

⁶⁾ Der SiN-Spaltung geht offensichtlich eine Adduktbildung voraus, da bei der Zugabe von BX3 zu einer Lösung von 1 in CH2Cl₂ bei ≈ -30°C zunächst ein Niederschlag gebildet wird, der sich beim Erwärmen unter (CH3)₃SiX-Bildung löst.

⁷⁾ Im Gegensatz dazu liefert die Umsetzung von (CH₃)₂P(S)NHCH₃ mit BBr₃ bei 80-90°C in Toluol nur 5-10% 7. Hauptprodukte sind (CH₃)₂P(S)Br und (CH₃NBBr)₃, d. h. die PN-Spaltung hat gegenüber der HBr-Abspaltung Vorrang. Letztere erfolgt erst bei der destillativen Aufarbeitung aus dem intermediär gebildeten Br₂BNHCH₃ durch Erhitzen im Vakuum. Noch geringere 7-Ausbeuten bringt die Umsetzung von (CH₃)₂P(S)NHCH₃ mit B(SCH₃)₃, und bei der Einwirkung von (CH₃)₂P(S)Cl auf B[N(CH₃)Si(CH₃)₃]₃ läuft bei 110-160°C die BN-Spaltung der SiN-Spaltung den Rang ab.

Während die Bis[dimethyl(thiophosphoryl)amino]borane 4 und 8 nicht isolierbar waren, gelingt die Darstellung des B-Methylderivats 10 leichter. Das stark acide CH₃BBr₂ reagiert mit 1 bei -78°C zunächst offenbar zu einem Addukt. Die 1:1-Reaktion liefert (bei 30°C) aber nur NMR-spektroskopische Hinweise auf 9, das offensichtlich rasch in (CH₃)₂P(S)Br und (CH₃NBCH₃)₃ zerfällt. Diese Konkurrenzreaktion wird auch bei der 2:1-Umsetzung zu 10 nicht unterbunden. Daher isoliert man 10 nur in etwa 40proz. Ausbeute.

Ebenfalls durch SiN-Spaltung zugänglich sind die beiden [Dichlor(thiophosphoryl)-amino]borane 11 und 12. Dabei reagiert BBr₃ bereits bei Raumtemperatur, (CH₃)₂BBr, das sehr viel schwächer Lewis-acid ist, hingegen erst unter Rückslußbedingungen.

$$Br_2B - NCH_3 - P(S)Cl_2$$
 $(CH_3)_2B - NCH_3 - P(S)Cl_2$
11 12

Thermische Stabilität und Zersetzung

Die beiden Tris[dimethyl(thiophosphoryl)amino]borane 5 und 7 sind bis 160°C und kurzfristig bis mindestens 200°C stabil. Im Gegensatz dazu zersetzen sich die Verbindungen des Typs $(CH_3)_2P(S)-NCH_3-BX_2$ und $(CH_3)_2P(S)-NH-BX_2$ relativ leicht ⁸⁾. So ist 2a kurzfristig bis 90°C stabil, 2b zerfällt zwischen 40 und 50°C, das Bromid 2c etwa ab 20°C. $(CH_3)_2P(S)-NH-BCl_2$ (6) besitzt eine deutlich höhere Zersetzungsschwelle als 2c. Unter Berücksichtigung früherer Beobachtungen ³⁾ ergibt sich die Stabilitätsreihe: $X = N(CH_3)CH_2 - > C_2H_5 > CH_3 > N(CH_3)_2 > F > Cl > Br.$

Alle Verbindungen liefern beim Erhitzen ein Borazin-Derivat, 2c z. B. in 4 h bei 50 C nach (6) quantitativ, während sich $(CH_3)_2P(S)-NCH_3-B(CH_3)_2$ in 3 h bei 180°C erst zu 25% gemäß (6) zersetzt.

$$(CH_3)_2P(S) - NCH_3 - BX_2 \rightarrow (CH_3)_2P(S)X + \frac{1}{3}(CH_3NBX)_3$$
 (6)

Die Umsetzungen nach (6) können inter- oder intramolekular ablaufen. Bei einem intramolekularen Mechanismus sollte monomeres Borazin entstehen, das entweder trimerisiert oder in die BN-Bindung von 2 eingeschoben wird. Da sich die Verbindungen mit steigender Verdünnung jedoch wesentlich langsamer zersetzen, ist ein intermolekularer Mechanismus unter BN-Kettenaufbau wahrscheinlicher.

Bei der Zersetzung entstehen keine P-haltigen Heterocyclen wie 13 oder 14. Dies zeigt, daß die Borazinbildung unter Wanderung eines Restes R bzw. X vom Bor zum Phosphoratom thermodynamisch stark bevorzugt ist.

⁸⁾ Die Zersetzungen wurden ¹H-NMR-spektroskopisch festgestellt, jedoch nur in einigen Fällen quantitativ verfolgt.

Assoziation

Monoaminoborane neigen zur Di- oder Trimerisierung. Das sich einstellende Gleichgewicht ist von sterischen und elektronischen Faktoren abhängig ^{4,9)}. Die ¹¹B-NMR-Spektren der Verbindungen vom Typ 2 zeigen ebenso wie deren ¹H-NMR-Spektren vierfach koordiniertes Bor neben dreifach koordiniertem an ¹⁰⁾. Ersteres rührt nicht von einer intramolekularen Assoziation, z. B. 15 her, da kryoskopische Mol.-Masse-Bestimmungen einen Assoziationsgrad > 1 und < 2 ergeben ¹¹⁾. Somit ist eine Dimerisierung wahrscheinlich. Diese kann nach 16 oder 17 erfolgen. Eine eindeutige Entscheidung zwischen diesen beiden Möglichkeiten erlauben die vorliegenden Daten noch nicht, jedoch halten wir eine Assoziation nach 17 für wahrscheinlicher.

In der Reihe der (Dialkylamino)dihalogenborane nimmt die Stabilität der Dimeren ab, je größer die Reste R und die Halogenatome sind. Die [Dimethyl(thiophosphoryl)]-gruppe dürste ihrem Raumanspruch nach der Trimethylsilylgruppe nahe kommen, die sterisch etwas weniger belastet als die *tert*-Butylgruppe. Folglich sollte bei der Koordination nach 16 das Fluorid 2a das stabilste Dimere bilden, das Bromid 2c hingegen das instabilste. Die NMR-Daten von 2a-c in CH₂Cl₂ zeigen aber solgende Monomeren-Dimeren-Verteilung (in Mol-%):

Sie ist damit genau umgekehrt, wie für eine "Aminoboran-Assoziation" erwartet werden kann. Da aber Borbromide sehr starke Lewis-Säuren sind, die z. B. mit Trimethylphosphinsulfid stabile Addukte bilden - im Gegensatz etwa zu BF₃ -, ist das Assoziationsverhalten über 17 erklärbar. Hierfür spricht auch, daß die Δ¹¹B-Werte von monomerem und dimerem Aminoboran ($\Delta^{11}B=\delta^{11}B_{dimer}-\delta^{11}B_{monomer}$) in der Reihe der (Dimethylamino)borane Me₂NBX₂ (X = F: nicht meßbar; X = Cl: Δ^{11} B = 16.8 ppm; X = Br: $\Delta^{11}B = 19.6$ ppm) stets kleiner sind, als in der Reihe 2a-c (X = F: $\Delta^{11}B = 16.8$ ppm; $X = Cl: \Delta^{11}B = 28.0 \text{ ppm}; X = Br: \Delta^{11}B = 33.7 \text{ ppm}$). Andererseits liegt das $\delta^{11}B$ -NMR-Signal von (CH₃)₃PS·BBr₃ mit -18.4 ppm bei wesentlich tieferem Feld als das von 2c $(\delta^{11}B = +5.1 \text{ ppm})$. Der $\delta^{11}B$ -Wert von $(CH_3)_3PS \cdot BBr_3$ ist daher nicht als charakteristisch für die S → BBr₃-Gruppe anzusehen. Das bei höherem Feld liegende Signal von 2c kann durch den Elektronendichte liefernden induktiven Effekt der Aminogruppe bedingt sein, der die Basizität des Schwefels erhöht. Aus den IR-Spektren der Verbindungen ließ sich keine schlüssige Folgerung auf S- oder N-Koordination ziehen. 11 zeigt keine Assoziation: durch den -I-Effekt der Cl-Atome wird also die S- wie N-Basizität hinreichend geschwächt.

⁹⁾ H. Nöth und H. Vahrenkamp, Chem. Ber. 100, 3353 (1967).

¹⁰⁾ Im festen Zustand liegen die Verbindungen 2a-c wahrscheinlich alle dimer vor.

¹¹⁾ In Benzol für 2b gefundene Werte: 310-328 (ber. 203.5 bzw. 407).

Tab. 1. Kernresonanzspektroskopische Daten von [(Thiophosphoryl)amino]boranen

Verbindung		8 ¹¹ B [ppm]	8 ³¹ P [ppm]	8 ¹⁴ N [ppm]	δ¹H CH₃P	² J _{PCH} [Hz]	8 ¹ H NCH ₃	J _{PNCH}	8 ¹ H BCH ₃
B[NH-P(S)(CH ₃) ₂] ₃	s.	-26.2	-54.6	+286	-1.84	13.3	-6.60*)	1	1
$CH_3 - P(S)(CH_3)_2$] ₃	7	-31.4	-64.2	+315?	-1.97	12.8	-2.81	12.5	I
$B[NH - P(S)(CH_3)_2]_2^{*}$		-36.5	-55.4	1	-1.92	13.6	I	1	-0.64
$B[NH - P(S)(CH_3)_2]_2^{*}$		-32.2	-57.3	١	-1.86	13.3	ı	1	- 7.35 m
$NH - P(S)(CH_3)_2$	4	-27.8	-55.3	ı	-1.95	13.5	-5.12	1	I
$B[NCH_3 - P(S)(CH_3)_2]_2$	01	-42.2	-63.2	+298	-1.90	12.9	-2.85	12.8	-0.87
$NCH_3 - P(S)(CH_3)_2$	œ	-34.2	-71.3	ı	-2.31	13.0	-2.98	12.0	ı
$-NH-P(S)(CH_3)_2$	9	-28.7	-61.8	ı	-2.08	13.5	ı	1	I
		6.6 –	-63.4	i					
$F_2B-NCH_3-P(S)(CH_3)_2$	2a	-16.5 +0.3	-67.5	i 1	-1.97	13.5	-2.92	12.2	ı
$Cl_2B-NCH_3-P(S)(CH_3)_2$	2 b	- 36.8	-74.5	i	-2.23	13.2	-3.34	11.4	l
		4. 7 -	-76.4	i					
$Br_2B-NCH_3-P(S)(CH_3)_2$	2c	-28.5	-66.8	i	-2.15	12.9	-3.07	12.2	1
		+ 2.2	ı	ì					
$_2B-NCH_3-P(S)CI_2$	12	-57.5	-64.5	218	I	1	-3.31	18.4	06'0-
$Br_2B-NCH_3-P(S)Cl_2$	11	-35.5	- 59.5	i	I	ı	-3.23	18.0	1

*) Nur NMR-spektroskopisch untersucht, nicht analytisch rein isoliert.

Kernresonanzuntersuchungen

Von den neuen Verbindungen wurden ¹H-, ¹¹B-, ³¹P- und ¹⁴N-Kernresonanzspektren aufgenommen. Die erhaltenen Daten sind in Tab. 1 aufgeführt.

Tris[dimethyl(thiophosphoryl)amino|borane

Das ¹¹B-Kernresonanzsignal von 7 liegt bei tieferem Feld als das von 5. Analoges gilt etwa auch für B[N(CH₃)₂]₃ (δ^{11} B -27.3 ppm), dessen Dimethylaminogruppen propellerartig um $\approx 30^{\circ}$ verdrillt sind, und das planare B(NHCH₃)₃ (δ^{11} B -24.6 ppm)¹²⁾. Die ¹¹B-NMR-Daten legen analoge Strukturen für 5 und 7 nahe. Wegen der Sperrigkeit der (CH₃)₂P(S)-Gruppe könnten die (PNH)B-Ebenen in 5 gegen die BN₃-Ebene ebenfalls verdrillt sein.

Die 31 P-NMR-Signale liegen im Erwartungsbereich der $(CH_3)_2P(S)-N$ -Gruppe $^{13)}$. Ein 14 N-NMR-Signal konnte nur bei 5 sicher gemessen werden. Der δ^{14} N-NMR-Wert zeigt ein planar koordiniertes N-Atom in einem Tris(amino)boran $^{14)}$ an. Das bei niedrigem Feld beobachtete 1 H-Signal der NH-Gruppe in 5 spricht zusammen mit einer sehr breiten und bei niedrigen Wellenzahlen liegenden vNH-IR-Bande (3150 cm $^{-1}$) für das Vorliegen von H-Brückenbindungen, die von $Nyquist^{15}$ auch bei anderen $R_2P(S)$ NH-Systemen beobachtet wurden. Wir nehmen daher an, daß 5 die Struktur 18 besitzt.

Bis|dimethyl(thiophosphoryl)amino|borane

Wie bei 5 und 7 sind auch bei den Bis[dimethyl(thiophosphoryl)amino]boranen die B-Atome in den NH-Verbindungen besser abgeschirmt als in den CH₃N-Verbindungen. Da in allen Spektren nur ein einziges scharfes ¹¹B-NMR-Signal im "Aminoboran-Bereich" beobachtet wurde, sind Assoziationen auszuschließen. Die ³¹P-NMR-Signale liegen mit Ausnahme von 8 im Erwartungsbereich; die bei 8 beobachtete Tieffeldverschiebung dürfte auf den induktiven Abzug von Elektronendichte durch das Cl-Atom zurückzuführen sein, ein Effekt, der bei 4 nicht erkennbar ist, sich aber in der Abschirmung der CH₃P-Protonen wieder findet, und zwar in stärkerem Maße als bei der CH₃N-Gruppe. Die Kopplungskonstanten bleiben bei allen (CH₃)₂P(S)NCH₃-Derivaten aber praktisch gleich.

[Dimethyl(thiophosphoryl)amino]borane

Die ¹¹B-NMR-Signale der Verbindungen 2a-c sowie 6 und 11 liegen im Bereich der δ^{11} B-Werte für Monoaminoborane. Die Boratome sind allerdings im Vergleich zu X_2 BNHR oder X_2 BNR₂ schlecht abgeschirmt; dies geht auf die Konkurrenz der R_2 P(S)-

¹²⁾ H. Nöth, Gmelins Handbuch der Anorganischen Chemie, Ergänzungsband 25, 208 (1975).

V. Mark, C. H. Dung und M. M. Crutchfield, Topics Phosphorus Chemistry 5, 227 (1967).
 W. Beck, W. Becker, H. Nöth und B. Wrackmeyer, Chem. Ber. 105, 2883 (1972).

¹⁵⁾ R. A. Nyquist, Applied Spectroscopy 11, 161 (1957); 22, 452 (1968).

Gruppe um die Elektronendichte an den N-Atomen zurück. Man beobachtet, von 4 abgesehen und wie bereits oben beschrieben, ein weiteres 11 B-NMR-Signal im Bereich des vierfach koordinierten Bors. Die relativ stark elektronegativen Dihalogenborylgruppen führen auch zu einem Abschirmungsverlust am P-Kern. Daß dieser bei der Fluor-Verbindung 2a am geringsten ausfällt, dürfte eine Folge der $B-F-\pi$ -Rückbindung sein. Dies wird auch daraus ersichtlich, daß die CH_3P - und die CH_3N -Protonen besser abgeschirmt bleiben. Nach den $\delta^{31}P$ - und $\delta^{1}H$ -Werten ist die Cl_2B -Gruppe der stärkste Elektronenakzeptor – vorausgesetzt, daß selbst in dieser eng begrenzten und verwandten Reihe von Verbindungen nicht andere Effekte einen wesentlichen Einfluß auf die Abschirmung nehmen. Die relativ geringe Variation von $^2J_{PCH}$ und $^3J_{PNCH}$ schließt jedenfalls drastische Strukturänderungen im Bereich der $(CH_3)_2P(S)-NR$ -Gruppe aus.

Wir danken dem Fonds der Chemischen Industrie für die Förderung unserer Arbeiten. Dank gebührt auch der BASF Aktiengesellschaft, den Farbwerken Hoechst AG, Werk Knapsack, sowie den Farbenfabriken Bayer AG, Leverkusen, für großzügig zur Verfügung gestellte Chemikalien. Für die Aufnahme von NMR-Spektren danken wir den Herren K. Blank, H. Fußstetter, R. Goetze und P. Wolfgardt, für die analytischen Arbeiten Frau L. Moser und Herrn K. Schönauer.

Experimenteller Teil

Die Untersuchungen wurden wegen der Feuchtigkeits- und Luftempfindlichkeit der Verbindungen unter N_2 -Schutzgas oder i. Vak. durchgeführt. Dementsprechend wurde nur mit wasserfreien Lösungsmitteln gearbeitet. BF₃, BCl₃ und BBr₃ standen als Handelsprodukte zur Verfügung. Nach Literaturvorschriften erhielten wir CH₃BBr₂¹⁶, B[NCH₃Si(CH₃)₃]₃¹⁷, (CH₃)₂P(S)NH₂ und (CH₃)₂P(S)-NHCH₃¹⁸. Metallierung der beiden letzten Verbindungen mit LiC₄H₉ in Hexan und Umsetzung mit (CH₃)₃SiCl führte zu (CH₃)₂P(S)-NH-Si(CH₃)₃ (3) (Sdp. $85-90^{\circ}$ C/ 10^{-2} Torr; Schmp. 81° C) und (CH₃)₂P(S)-NCH₃-Si(CH₃)₃ (1) (Sdp. $78-84^{\circ}$ C/ 10^{-2} Torr; Schmp. 43° C)².

Zur Aufnahme der ¹¹B-, ³¹P- und ¹⁴N-NMR-Spektren diente ein Varian HA-100-Kernresonanzspektrometer. BF₃·O(C₂H₅)₂, 85 proz. H₃PO₄ und gesättigte wäßr. NaNO₃-Lösung dienten als externe Standards. ¹H-NMR-Spektren registrierte ein Varian A-60-Gerät, Massenspektren wurden mit einem Varian-Atlas-CH7-Spektrometer, IR-Spektren mit einem Perkin-Elmer-325-IR-Spektrometer aufgenommen.

Die Elementaranalysen wurden im mikroanalytischen Labor des Instituts ausgeführt. Falls möglich wurde in Gegenwart von WO_3 als Katalysator verbrannt. Cl $^{\Theta}$ und Br^{Θ} bestimmten wir potentiometrisch mit $N/100 \, AgNO_3$.

Tris[dimethyl(thiophosphoryl)amino]boran (5): 8.3 g (CH₃)₂P(S)-NH-Si(CH₃)₃ (46 mmol) wurden in 30 ml CH₂Cl₂ gelöst und unter Rühren bei -60°C in 10 min tropfenweise mit 3.84 g BBr₃ (15.3 mmol) versetzt. Dabei bildete sich zunächst eine Suspension. Nach Auftauen auf Raumtemp. lag eine leicht trübe Lösung vor. Nach 20 min Rühren bei Raumtemp. wurde das Lösungsmittel und das gebildete (CH₃)₃SiBr i. Vak. entfernt. Die zurückbleibenden eisblumenartigen Kristalle schmolzen, aus CH₂Cl₂ umgelöst, mit Pentan gewaschen und i. Hochvak. getrocknet, bei 157-160°C. Ausb. 3.0 g (59%).

C₆H₂₁BN₃P₃S₃ (334.5) Ber. C 21.50 H 6.30 B 3.22 N 12.50 Gef. C 21.50 H 6.19 B 2.83 N 12.53 Mol.-Masse 335 (MS, bezogen auf ¹¹B)

¹⁶⁾ P. I. Paetzold und H. J. Hansen, Z. Anorg. Allg. Chem. 345, 197 (1971).

¹⁷⁾ H. Nöth und M. J. Sprague, J. Organomet. Chem. 22, 11 (1970).

¹⁸⁾ K. Ebeling, Dissertation, Univ. München 1968.

	댰
	ĕ
	Ē
	8
ŕ	Ξ
	ryl)amino
•	Ξ
	ᆵ
í	Ë
	Ç
	2
•	ō,
	õ
•	듯
	ਰ
•	Ξ
:	₽
	≥
•	☴
	Ĕ
	₹
(_
	u
	ō
	_
	<u>5</u>
١	ᇙ
(2
	ō
•	isch
•	S
	Σ
•	ana
	ä
	und ana
	₫
	~
	ĕ
	S
•	☴
:	¥
	Š
	ć,
	gen, phys
	Ë
	ಹ
	Ξ
	ᅙ
:	Ξ
•	8
	قِ
	óó
	Ξ
;	₹
	ž
	ű
(ష
•	
•	ab. 2.
,	ab.
E	8
۰	

Produkt	Summenformel MolMasse Ber. Gef.*)		ပ	Ani	Analyse B	z	×	Silylamin g mmol	Boran g mmol	Temp. °C/ Zeit [min]	Ausb.	Schmp. [°C] Lösungsmittel
Tris[dimethyl(thio- phosphoryl)methyl- amino]boran (7)	C ₉ H ₂₇ BN ₃ P ₃ S ₃ 377.3	Ber. Gef.	28.66 28.42	7.21 2	2.87 11. 2.8 10.	11. 14 10.77	1.1	2.4 12.3	BBr ₃ 1.06 4.1	-60/10 25/20	1.2 78	122 C ₆ H ₆
Bis[dimethyl(thio- phosphoryl)amino]- methylboran	C ₅ H ₁₇ BN ₂ P ₂ S ₂ 242.1	Ber. Gef.	24.91 24.28	7.08 4	4.47 11.	11.57	1 1	3.3 18.2	CH ₃ BBr ₂ 1.69 9.1	78/10 bis 25/20	0.70	93–95 CH ₂ Cl ₂
Bis[dimethyl(thio-phosphoryl)methyl-amino]methylboran (10	C ₇ H ₂₁ BN ₂ P ₂ S ₂ 269.8 270	Ber. Gef.	31.11 31.44	7.77 4 7.67 3.	4.07 10. 3.9 10.	10.38	1.1	2.3 11.8	CH ₃ BBr ₂ 1.09 5.9	-78/10 bis 25/20		67 CH ₂ Cl ₂
Dichlor[dimethyl(thio- phosphoryl)amino]- boran (6)	C ₂ H ₇ BCl ₂ NPS 189.8 190	Ber. Gef.	12.65 13.53	3.69 5 3.92 4.	5.68 7. 4.5 7.	7.40 37 7.48 34	37.38 (Cl) 34.60	3 1.35 7.45	BCl ₃ 0.87 7.5	-78/20 25/15	0.95 67	103 – 104 (Zers.) Pentan
[Dimethyl(thiophos-phoryl)methylamino]-difluorboran (2a)	C ₃ H ₉ BF ₂ NPS 170.6 171	Ber. Gef.	21.05 22.06	5.26 6. 5.29 5.	6.31 8. 5.7 8.	8.18	1.1	1 3.62 18.6	BF ₃ - 20.5	- 78/20 25/30	2.7 85	93 – 100 (Zers.) CH ₂ Cl ₂
Dichlor[dimethyl(thio- phosphoryl)methyl- amino]boran (2b)	C ₃ H ₉ BCl ₂ NPS 203.5 204	Ber. Gef.	17.68 17.18	4.42 5. 4.36 5.	5.29 6. 5.15 6.	6.87 34 6.42 33	34.86 (Cl) 33.91	2.6 13.4	BCl ₃ 1.57 13.4	-78/20 25/30	1.4	67 (Zers.) CH ₂ Cl ₂ /C ₆ H ₆
Dibrom[dimethyl(thio- phosphoryl)methyl- amino boran (2c)	C ₃ H ₉ BBr ₂ NPS 292.5 293	Ber. Gef.	12.35 12.32	3.08 3. 3.16 3.	3.69 4. 3.4 4.	4.80 54 4.80 53	54.54 (Br) 53.63	2.42 12.4	BBr ₃ 3.12 12.4	- 78/40 10/20	2.42 67	111 (Zers.) C ₆ H ₆
[Dichlor(thiophos-phoryl)methylamino]-dimethylboran (12)	C ₃ H ₉ BCl ₂ NPS 203.7 204	Ber. Gef.	17.68 17.44	4.42 5. 4.29 5.	5.29 6. 5.13 7.	6.87 34 7.1 34	34.81 (Cl) 34.38		(CH ₃) ₂ BBr 1.21 10.0	0/30 80/180	1.45	Sdp. 39/10 ⁻² Torr
Dibrom[dichlor(thio- phosphory])methyl- amino]boran (11)	CH ₃ BBr ₂ Cl ₂ NPS 333.6 334	Ber. Gef.	3.60	0.91 3.	3.24 4. 3.01 4.	4.20 21 4.18 20	21.25 (CI) 20.92		BBr ₃ 5.13 20.1	78/60 25/120	2.4 34	42 (Zers.) CH ₂ Cl ₂

*) MS, bezogen auf ¹¹B. **) Cl, P(S) – NCH, – Si(CH₁),

Reaktion von B[NCH₃-Si(CH₃)₃]₃ mit (CH₃)₂P(S)Cl (1:3): 1.5 g B[NCH₃-Si(CH₃)₃]₃ (4.7 mmol) und 1.72 g (CH₃)₂P(S)Cl (14.5 mmol) wurden 5 h unter Rückfluß gehalten. In dieser Zeit sank die Siedetemperatur von 110°C auf ≈ 60 °C, jedoch brachte die Destillation bis 100°C nur wenige Tropfen (CH₃)₃SiCl (≈ 0.1 g). Zurück blieben die Edukte, die, wie gebildetes (CH₃)₂P(S) – NCH₃ – Si(CH₃)₃ [¹H – 0.32 ppm. – 2.67 (³J_{PNCH} 14.4 Hz). – 1.77 (²J_{PCH} 12.8 Hz)] und [(CH₃)₃Si – NCH₃]₂BCl (δ ¹H – 0.23 ppm. – 2.68; Lit. ¹⁷⁾ – 0.21, – 2.66), ¹H-NMR-spektroskopisch identifiziert wurden. Das Molverhältnis B[NCH₃ – Si(CH₃)₃]₃: ClB[NCH₃ – Si(CH₃)₃]₂ betrug 9:1.

Reaktion von $(CH_3)_2P(S)-NCH_3-Si(CH_3)_3$ (1) mit BCl_3 (2:1): 1.5 g 1 (7.7 mmol) wurden in 15 ml CH_2Cl_2 gelöst. Nach Abkühlen wurden bei $\approx -60^{\circ}C$ 0.45 g BCl_3 (3.9 mmol) hinzugefügt. Dann ließ man unter Rühren auftauen und $\frac{1}{2}$ h bei Raumtemp. reagieren. Die 1H -NMR-spektroskopisch untersuchte Lösung zeigte die Verbindungen 7 (δ^1H – 1.97 ppm ($^2J_{PCH}$ 12.8 Hz), -2.98 ($^3J_{PNCH}$ 12.5 Hz) und 8 (δ^1H – 2.31 ppm ($^2J_{PCH}$ 13.1 Hz), -2.98 ($^3J_{PNCH}$ 12.0 Hz) an. Die Signal-flächen standen im Verhältnis 1:1 zueinander, entsprechend 8:7 = 3:2. Nach Abziehen alles Flüchtigen und Lösen in CH_2Cl_2 hatten sich Signallage und Intensität nicht verändert. Eine Trennung der Produkte durch Sublimation, Destillation oder Umlösen gelang nicht.

Reaktion von $(CH_3)_2P(S)-NH-Si(CH_3)_3$ (3) mit BCl_3 (2:1): 2.56 g 3 (14.1 mmol), gelöst in 15 ml CH_2Cl_2 , wurden mit 0.82 g BCl_3 (7.0 mmol) wie vorstehend zur Reaktion gebracht. Der danach vorliegende Niederschlag wurde abgetrennt. Er erwies sich ¹H-NMR-spektroskopisch als Gemisch von $B[NH-P(S)(CH_3)_2]_3$ (5) mit $ClB[NH-P(S)(CH_3)_2]_2$ (4) ($\delta^1H-1.84$ ppm ($^2J_{PCH}$ 13.3 Hz); $\delta^1H-1.95$ ($^2J_{PCH}$ 13.5 Hz). Die Intensität dieser Signalgruppe stand im Verhältnis 2:1, entsprechend einem Molverhältnis von 4:5 = 3:1. Eine Trennung in die Komponenten gelang nicht.

Zersetzung von $(CH_3)_2P(S)-NCH_3-BBr_2$ (2c): 1.4 g 2c (4.8 mmol) wurden 4 h bei 50°C zersetzt. Danach konnten 0.8 g $(CH_3)_2P(S)Br$ (96%; $\delta^{31}P$ -68.3 ppm) vom Sdp. 35-37°C/10⁻² Torr abdestilliert werden. Der aus Benzol/Petroläther umgelöste Rückstand war reines $(CH_3NBBr)_3$. $\delta^{11}B$ -30.2 ppm (Br: ber. 66.72; gef. 66.1%).

Die in der Tab. 2 aufgeführten Versuche wurden in Analogie zur Darstellung von 5 durchgeführt. Ergebnisse der NMR-spektroskopisch verfolgten Zersetzungen finden sich in den Anmerkungen.

Anmerkungen zur Tabelle 2

Zu 2a: 2a entstand meist glasartig; aus CH_2Cl_2 kann es kristallin erhalten werden. 2a zersetzt sich ab 90°C in 30 min quantitativ zu $(CH_3)_2P(S)F$ (δ^1H -1.90, $^2J_{PCH}$ 13.3 Hz, $^3J_{FPCH}$ 0.9 Hz; Lit. $^{19)}$ -1.87 ppm) und $(CH_3NBF)_3$ ($\delta^{11}B$ -25.3 ppm; Lit. $^{20)}$ -24.7 ppm).

Zu 2b: Das Dichlorid zersetzt sich bei Raumtemp. langsam. Ab 40° C wird die Zersetzung merklich, nach 1stdg. Erwärmen auf 50° C in Benzol ließen sich die Zersetzungsprodukte $(CH_3)_2P(S)Cl$ und $(CH_3NBCl)_3$ NMR-spektroskopisch nachweisen. Bei $60-100^{\circ}$ C bilden sie sich rasch und quantitativ. $(CH_3)_2P(S)Cl$: $\delta^1H - 2.25$ ppm, $^2J_{PCH}$ 13.2 Hz, Lit. 19 – 2.24 ppm, 13.2 Hz; $\delta^{31}P - 87.5$ ppm, Lit. 19 – 86.6 ppm; $(CH_3NBCl)_3$: $\delta^{11}B - 32.0$ ppm, Lit. 21 – 31.2 ppm.

Zu 12: Diese Verbindung ist bei Raumtemp. mindestens 1 Monat ohne Zersetzung haltbar. Nach 5 h Erhitzen auf 100 °C konnte (CH₃NBCH₃)₃ ¹¹B-NMR-spektroskopisch gerade noch nachgewiesen werden ($\delta^{11}B-36.5$ ppm).

Zu 11: Zerfällt bereits bei Raumtemp. in 1-2 h in $\text{Cl}_2P(S)\text{Br}(\delta^{31}P+15.5\text{ ppm},\text{Lit.}^{19)}+14.5\text{ ppm})$ und $(\text{CH}_3\text{NBBr})_3$ ($\delta^{11}\text{B}-29.3\text{ ppm},\text{Lit.}^{20)}-28.7\text{ ppm}).$

¹⁹⁾ G. Mavel, G. Martin, H. David und A. Besnard, Travaux inedits, 1962; G. Mavel und G. Martin, Rpt. DRME 158 (1962), Dec. 1963.

²⁰¹ B. Wrackmeyer, Dissertation, Univ. München 1973.

²¹⁾ H. Vahrenkamp, Dissertation, Univ. München 1967.